
Federal Reserve Bank of St. Louis – Research Division (10/16/2006)

© 2006, The Federal Reserve Bank of St. Louis. Articles may be reprinted, reproduced,
published, distributed, displayed, and transmitted in their entirety if copyright notice,
author name(s), and full citation are included. Abstracts, synopses, and other derivative
works may be made only with prior written permission of the Federal Reserve Bank of
St. Louis.

Populating an
ALFRED-type Database

TABLE OF CONTENTS

Section Page

Step 1: Set Up Data Spreadsheet 1

Step 2: Enter Data and Check for Keying Errors 3

Step 3: Create and Check Plot of Levels 4

Step 4: Create and Check Revision Count 6

Step 5: Create Necessary Files for Final Check 8

Step 6: Create Text Files for Web Group 10

Step 7: Send Necessary Files to the Web Group 12

Step 8: Web Group Adds Information from Step 7 to the Development Server 13

Step 9: Work with Web Database Output 20

Step 10: Make Adjustments/Corrections 28

Step 11: Repeat Steps 8-10 Until No Corrections Are Required.......... ... 28

Step 12: Web Group Makes Live on Public Website 29

Appendix: Create Text Files for Web Group from Haver Archives 30

 1

After collecting the sources that contain the data you need as well as a complete list of release dates for
the period that you are preparing to create, you are now ready to create the first step, the data
spreadsheet.

If you will be creating vintage data for several series from the same release, you can use the spreadsheet
that results from keying the first variable as a template for the rest of the series. Just make a copy of the
workbook after step 4, open the file, remove the raw data, and save it as template.xls.

To create one vintage series, complete all of the steps below.

STEP 1: SET UP DATA SPREADSHEET

1. Open a new Excel workbook.

Document Series Definition

2. Create a “Series Info” sheet. (Double-click on the tab at the bottom to change the name from
“Sheet1” to “Series Info”.)

3. Enter descriptive information about the series on the “Series Info” sheet. This information can
include the series mnemonic, a short description, source, frequency, units, seasonal adjustment,
notes about vintage sources, etc.

Document Benchmark and Annual Revision Sources

4. Create a “Benchmark Info” sheet by selecting “Insert-Worksheet” from the pull-down menus.
(Double-click on the tab at the bottom to change the name from “Sheet2” to “Benchmark Info”.)

5. Enter information about the sources that contain the complete benchmarks and annual revisions
on the “Benchmark Info” sheet. This information will include release date, publication date,
observation periods changed in the benchmark, any changes in units that occurred, etc.

 2

The data will be entered on a tab titled “1RawData”. First, you will need to set up this sheet.

6. Create a sheet in your workbook named “1RawData” by selecting “Insert-Worksheet” from the
pull-down menus. (Double-click on the tab at the bottom to change the name from “Sheet3” to
“1RawData”.)

Set-up Column and Row Headers

7. In Row 1 enter information to document the source of the data for each column
8. In Row 2 enter the release dates for the periods that will be entered by hand. The first release

date should be placed in cell B2.
9. Highlight in yellow any cell in Row 2 for columns that will contain benchmark or annual

revision data.
10. Row 3 contains the release dates in a format that will be used in later steps.

a. Enter the word “Date” in A3.
b. Enter this formula to create the new date format in cell B3

="_"&YEAR(B2)&"_"&TEXT(MONTH(B2),"00")&"_"&TEXT(DAY(B2),"00").
c. Copy this formula from B3 and paste to the right for all of the release dates.

11. In Column A, starting in Row 4, enter the observation periods for the data you will be keying in.
Use the Excel date format mm/dd/yy.

Set-up Conditional Formatting to Mark Revisions from Column to Column

12. Set up the conditional formatting to mark changes in the data values from the previous column.
This will help catch keying errors as you are entering the data.

a. Select B4
b. Select “Format – Conditional Formatting” from the pull-down menus.
c. Set “Condition 1” to be Cell Value Is – not equal to – =A4

d. Click the “Format” button.
e. Select the “Pattern” tab and then select a color to highlight the changing cells.
f. Click “OK” to exit “Format Cells” dialog.
g. Click “OK” to exit “Conditional Formatting” dialog.

13. Copy cell B4, select the entire range that will contain data (to the right: to the end of your release
date list; down: to the end of your observation period list), and then select “Edit-Paste” from the
pull-down menus. This will copy the “conditional format” over all of the cells that will
eventually contain data.

Create a Range for Use in Future Steps of the Process

14. Create a range name starting with A3 and ending with the final observation on the final release
date in this sheet. (The programs in this documentation will use the range name “rawdata”.)

a. Select the range that you wish to name
b. Select “Insert – Name – Define” from the pull-down menus.
c. Type the name of your range (rawdata) in the “Names in workbook:” box.
d. Click “OK”

15. Save this file with the name of the mnemonic you are working with.

 3

This is what the sheet “1Rawdata” should look like.

Now you’re ready to enter the data from the sources that you collected.

STEP 2: ENTER DATA and CHECK FOR KEYING ERRORS
Helpful tips:

1. Save Often!
2. Watch for the conditional formats to show up. If a cell is highlighted in an unexpected place,

check your data entry.
3. After entering all of the raw data of the sheet “1RawData”, double-check your work.
4. After entering all benchmarks and annual revisions, it is usually safe to “fill across.” To do this

copy the observations that you will use to fill, then select the columns that will contain the same
values, and finally select Edit-Paste. In the picture below, you would have used “filling” to copy
the observations through 7/1/79 from the Jan-80 column through the Nov-80 column.

Potential
problem

Correct
Pattern

 4

STEP 3: CREATE and CHECK PLOT OF LEVELS
A quick plot of the levels will point out any large keying errors that may remain.

Create the Chart

1. Select the range “rawdata”.
a. Press F5 to open the Go To box
b. Select “rawdata” in the “Go To:” list
c. Click “OK”

2. Select “Insert-Chart” from the pull-down menus
3. Change the “Chart Type” to Line
4. Change the “Chart Sub-Type” to a type with no symbols

5. Click “Next” to complete Step 1 of the Chart Wizard
6. Click “Next” to complete Step 2 of the Chart Wizard
7. In Step 3 of the Chart Wizard, select the “Legend” tab and un-check the “Show legend” box.
8. Click “Next” to complete Step 3 of the Chart Wizard
9. In Step 4, select “As new sheet:” and give the sheet a name of “2Chart”
10. Click “Finish” to close the Chart Wizard
11. Save the file.

 5

Check the Chart
12. Verify that the curves follow the expected pattern for the series that you are working on.

Problem:
To pinpoint a “bad” observation, hover over the spot on the chart. A pop-up box will tell
you the column label, the observation date, and the observation value.

Correct:

 6

STEP 4: CREATE AND CHECK REVISION COUNT
This serves as a double-check for the conditional formatting from step #1.

Mark the Cells that Revise

1. Create a sheet in your workbook named “3Verify” by selecting “Insert-Worksheet” from the
pull-down menus. (Double-click on the tab at the bottom to change the name from “Sheet4” to
“3Verify”.)

2. Copy all of Row 1 from “1RawData” and paste to Row 1 in “3Verify”.
3. Copy the observation dates from Column A in “1RawData” and paste to Column A of “3Verify”.

The first date should be place in Row 4.
4. In C4 of “3Verify”, enter this formula to mark changes from the previous release date -

EXACT('1RawData'!C4,'1RawData'!B4)
5. Set- up conditional formatting for cell C4 to mark a “FALSE” value.

a. Select C4
b. Select “Format – Conditional Formatting” from the pull-down menus.
c. Set “Condition 1” to be Cell Value Is – not equal to – TRUE

d. Click the “Format” button.
e. Select the “Pattern” tab and then select a color to highlight the changing cells.
f. Click “OK” to exit “Format Cells” dialog.
g. Click “OK” to exit “Conditional Formatting” dialog.

6. Copy C4 and paste it down through the last observation period.
7. Select the formulas you just created in column C, copy this column, and paste across to the right

for all of the release dates shown in Row 1.
8. Visually verify that the revision pattern for your series holds. For example, for the NIPA series,

a new observation should be added (advance estimate), the last observation should be revised
(preliminary and final estimates), 3-4 years should be revised (annual revision) or the entire
column should revise (benchmark). If you see an odd revision, check the raw data you entered in
“1RawData”.

9. Save the file.

Create a sum of all the observations for each release date
This will be used in a later step to compare the data after it is loaded on the web

10. In cell B2 of “3Verify”, enter a formula to sum all of the observations entered and stored for that
release date in the sheet “1Rawdata”. (=SUM('1RawData'!B4:B10000))

11. Copy B2 and paste across to the right for all of the release dates
12. Save the file.

Create a count of the number of revisions occurring on each release date

13. In Cell C3 of “3Verify”, enter a formula to count the number of “FALSE”s in each column
((=COUNTIF(C4:C10000,FALSE))

14. Apply a conditional format to this formula. The condition will depend on the revision pattern of
the series that you are working on. For example, with the NIPA series, except for benchmarks,
all other columns should only show 1 revision.

 7

a. Select C3
b. Select “Format – Conditional Formatting” from the pull-down menus.
c. Set “Condition 1” to be Cell Value Is – greater than – 1

d. Click the “Format” button.
e. Select the “Pattern” tab and then select a color to highlight the cells that don’t fit the

revision pattern for your series.
f. Click “OK” to exit “Format Cells” dialog.
g. Click “OK” to exit “Conditional Formatting” dialog.

15. Copy C3 and paste across to the right for all of the release dates.
16. Visually verify that the revision pattern for your series holds. In the NIPA series, if more than

one observation revises, check to see if the release date is also an annual revision or a
benchmark. If it’s not, check the raw data in the “1RawData” sheet.

17. Save the file.

This is what the “3Verify” sheet will like.

Potential
problem

Correct
Pattern

 8

STEP 5: CREATE NECESSARY FILES FOR FINAL CHECK
There is nothing to check in this step. However, it is a necessary step that makes creating text files and
checking your spreadsheet data against the data loaded on the web possible.

A) Create “4Aid Creation of Text Files” sheet

1. Insert another spreadsheet in your workbook – “4Aid Creation of Text Files” – by selecting
“Insert-Worksheet” from the pull-down menus.

2. Copy the release dates from Row 2 of the “1RawData” sheet, starting with column B.
3. Paste the dates into column A of this sheet.

a. Select cell A3
b. Select “Edit-Paste Special”
c. Select “Values” and “Transpose”
d. Click “OK”

4. In cell B3 of “4Aid Creation of Text Files”, enter this formula
="_"&YEAR(A3)&"_"&TEXT(MONTH(A3),"00")&"_"&TEXT(DAY(A3),"00")&"~". This formula
will create information needed by a SAS job to follow.

5. Copy and paste cell B3 down for all of the release dates in column A.
6. Save the file.

“4Aid Creation of Text Files” should look like this.

B) To use this information to create text files

1. Open in a text editor the SAS program that creates individual text files
2. Come back to the sheet “4Aid Creation of Text Files”; select B3 through the row that

contains the last release date, and copy.
3. Go back to the SAS program and paste this into the macro call at the end of the program

(after the text “%outer (indate=” but before the final “);”)
4. Save the updated SAS program

 9

C) Create “5Comparing to Web-Loaded Files” sheet
This will be used to compare the data in the spreadsheet file to the text files after they are loaded onto
the web, to ensure that the files were transferred correctly and assigned to the correct release date.

1. Insert another spreadsheet in your Excel workbook – “5Comparing to Web-Loaded Files” –
by selecting “Insert-Worksheet” from the pull-down menus.

2. Copy the release dates, starting in column B, from Row 1 of the “3Verify” sheet.
3. Transpose and paste the dates into this sheet.

a. Select cell A3
b. Select “Edit-Paste Special”
c. Select “Values” and “Transpose”
d. Click “OK”

4. Copy the observation sums, starting in column B, from Row 2 of the “3Verify” sheet.
5. Transpose and paste the sums into this sheet.

a. Select cell B3
b. Select “Edit-Paste Special”
c. Select “Values” and “Transpose”
d. Click “OK”

6. Copy the revision counts, starting in column B, from Row 3 of the “3Verify” sheet.
7. Transpose and paste the counts into this sheet.

a. Select cell C3
b. Select “Edit-Paste Special”
c. Select “Values” and “Transpose”
d. Click “OK”

8. Save the Excel file.

“5Comparing to Web-Loaded Files” sheet should look like this.

 10

STEP 6 – CREATE TEXT FILES FOR WEB GROUP FROM SPREADSHEET DATA
Vintage data files are organized by directories containing the archive year and date.

Consider the file path: ~/yyyy/yyyy-mm-dd/data/**/filename. ‘yyyy’ represents the archive year,
‘yyyy-mm-dd’ represents the archive date, “**” represents the type of data- such as “gdp” and
“monetary”, and ‘filename’ represents the series id/mnemonic.

This structure is shown in the image below. This image shows the files as they appear on the web
development server. Note the subdirectory “test_ignore” (defined later). Filenames followed by “.~1~”
are previous versions of files that have been renamed so that they are ignored. Also note the directory
structure.

To create individual text files for each column in your data spreadsheet, run the SAS program below.1

Some values in the program may need to be changed to coincide with your data (values to change are
also highlighted in green in the complete program code below).

1. %let var = finslc1;
Change finslc1 to whatever the mnemonic will be for the variable that you are working
on.

2. DATAFILE= "H:\Alfred\Proces~1\&var..xls"
Change H:\Alfred\Process Doc to equal the name of the directory where you stored your
raw data sheet in Step 1.15

3. SHEET="1RawData";
Change rawdata to equal the name that you gave your raw data sheet in Step 1.6

4. RANGE="rawdata";
Change rawdata to equal the name that you gave your data range in Step 1.14

5. %do i = 1 %to 201;
Change 201 to equal the number of release date columns in your 1RawData sheet.

6. file="H:\Alfred\Proces~1\webdir\&y\&y.-&m.-&d\data\gdp\&var";
command="md H:\Alfred\Proces~1\webdir\&y\&y.-&m.-&d\data\gdp\";

Change H:\Alfred\Process Doc\webdir to equal the name of the directory where you want
to store the raw text files on your PC.

7. format date yyqp6.;
Change yyqp6. to match the frequency of the data that you are working with. This is the
date format for quarterly data.

For monthly data, change yyqp6. to yymmp7.
For weekly and daily data, change yyqp6. to yymmddn8.

1 If you have access to archived Haver databases, see appendix for information on using these archives to create the necessary
text files.

 11

For calendar year data, change yyqp6. to year4.
8. %outer (indate=

The values following this line should be the values that you pasted in from Step 5.B.15

options nocenter nodate nonumber pagesize=32767 linesize=256 noxwait;
**;
**VARIABLE NAME/RESULTING TEXT FILE NAME **;
**;
 %let var = finslc1;

**;
**READ IN SPREADSHEET FILE **;
**;
PROC IMPORT OUT= WORK.inner
 DATAFILE= "H:\Alfred\Proces~1\&var..xls"
 DBMS=EXCEL REPLACE;
 SHEET="1RawData";
 RANGE="rawdata";
 GETNAMES=yes;
 MIXED=YES;
 SCANTEXT=YES;
 USEDATE=YES;
 GUESSINGROWS=100;
RUN;

**;
**OUTPUT TEXT FILES FOR WEB USE **;
**;
%macro outer(indate=);
%do i = 1 %to 201;
 %let y = %substr(%scan(&indate,&i,"~"),2,4);
 %let m = %substr(%scan(&indate,&i,"~"),7,2);
 %let d = %substr(%scan(&indate,&i,"~"),10,2);

 %let id = %scan(&indate, &i,"~");

 data newreal&i;
 set inner(keep=date &id where=(&id ne .));
 run;

 Create directory to store text files;
 data _null_;

 command="md H:\Alfred\Proces~1\webdir\&y\&y.-&m.-&d\data\gdp\";
 call system(command);
run;

 Write text files;
 proc printto new file="H:\Alfred\Proces~1\webdir\&y\&y.-&m.-&d\data\gdp\&var";
 run;
 proc print data=newreal&i noobs label;
 var date &id;
 format date yyqp6.;
 title " ";
 run;
 proc printto;
 run;
%end;
%mend;

%outer (indate=
_1980_01_18~
_1980_02_22~
_1980_03_19~
_1980_04_18~
_1980_05_20~
_1980_06_18~
_1980_07_18~
_1980_08_19~
_1980_09_19~
_1980_10_17~
.
.
.
);

 12

Output: Your output files should look like the example below. Be sure that your date is in the correct
format. Also be sure that the header row begins with the word “DATE”. These consistency of these
items is essential for the programs that the web group runs.

STEP 7: SEND NECESSARY FILES TO THE WEB GROUP
1. Using Winzip (or another compression software), zip together all of the text files that were

created in the last step. Be sure that the directory structure is included in the zip file.
2. Create a text file that contains the complete list of release dates for the series that you are

working on. This should include the release dates in Row 2 of the 1RawData sheet of your raw
data spreadsheet as well as the expected set of release dates for the data pulled from the
electronic archives.

3. Create a list of unit changes (where necessary). For example, the quarterly real final sales
experienced a number of unit changes over all of the available vintages. (The start dates given
below are release dates; the end dates are 1 day prior to the following start date.)

 Start End
Bil. of 1958 $ 1965-08-19 1976-01-19
Bil. of 1972 $ 1976-01-20 1985-12-19
Bil. of 1982 $ 1985-12-20 1991-12-03
Bil. of 1987 $ 1991-12-04 1996-01-18
Bil. of Chained 1992 $ 1996-01-19 1999-10-27
Bil. of Chained 1996$ 1999-10-28 2003-12-09
Bil. of Chained 2000$ 2003-12-10 Current

4. Email the zip file, the release date text file, and any unit changes to the web group member that
transfers the data to the development server.

 13

STEP 8: WEB GROUP ADDS INFORMATION FROM STEP 7 TO THE
DEVELOPMENT SERVER2

A. Based on the files received, the following steps are taken to incorporate the data text files, the release
dates and the unit changes.

1. Data files that need to be removed are moved to a subdirectory named “test_ignore,” which is
created within the same directory as the original data file. In this way, we retain the original data
files for possible future reference.

2. New files are copied into the appropriate existing archive directory. If there are existing files of
the same name, they are either renamed or moved to a “test_ignore” sub-directory – again, to
retain the original files.

3. New archive directories are created as needed, with the same structure as outlined above – this is
done mainly for pre-FRED vintages.

4. Existing files may need to be edited.
5. Existing files may need to be moved to different archive directories.
6. Release dates are imported to the database table “fred_release_date” using phpPgAdmin on the

development server and phpPgAdmin on the production (research) server. PhpPgAdmin is a
browser-based software package that allows access to the database.

The following image gives an example of a list of release dates ready to be imported into the
database, formatted as a tabbed-delimited text file. The first line of text lists the fields in the
fred_release_date table. Each release in the database is identified by a unique “fred_release_id.”
“Official” designates whether or not the release date is known with certainty, and “policy”
designates whether or not the release date applies to all series on the release.

2 The procedures in Steps 8 and 12 have been tested using the following software:

Red Hat Enterprise Linux 4
PostgreSQL 8.1.4
PHP 4.3.9
Apache 2.0.52

 14

The page in phpPgAdmin that we will use to add release dates to the fred_release_date table is
shown below. To add release dates to the table, click on the “Import” link.

This takes us to the following screen, from which we can choose the format of the file (we
choose “Tabbed”). We locate the file to be imported by choosing “Browse.” Click “Import” to
add the release dates to the table.

In the image below, some of the newly imported release dates can be seen, as well as release
dates that were added previously.

db_name

db_name

db_name

db_name

db_name

 15

Clicking on the “Edit” button next to a release date will allow you to edit it if necessary, as
shown below.

7. Units changes for individual series, changes to the names of press releases, and other additional

information are updated using the admin forms on the development server and the production
server. (Please note that the forms shown below were developed by the St. Louis Fed.)

An example of units changes as shown in the admin forms:

db_name

 16

B. Preparing and running update_date_vintages.php –

The program ~/update_data_vintages.php reads in data from the archive directories, merges data
revisions storing each revision only once, adjusts archive dates to release dates, and outputs database
files, a log file, and other information. The following settings are edited prior to running the program:

1. Choose between running an entire FRED category or specific series. If running an entire
category, the category ID number(s) must be listed in the program. If running specific series, the
Series ID’s must be listed in the program. In the example below, the empty array following
“only_ancestor_cat_ids” indicates that the program will not be restricted to a specific category –
and the “only_series_ids” array indicates that the program will run using the series “FINSLC1.”

2. Set “only_vintages_public” to “true” so that the program runs using release dates.
The “vintages_public” field in the database table “fred_series” must be set to true for each series
in the database.

3. Specify the range of archive directory dates (by year). In the example below, the program is set
to use years 1996 through 2006 (other ranges are coded into the program for convenience, but
are commented out in this example).

4. Specify the maximum archive date (yyyy-mm-dd) if needed. The maximum archive date is
mainly used for pre-FRED vintages that will be merged with existing ALFRED vintages. In the
example below, “max_archive_date” is set to false so that the program will use all available
archives within the year range specified.

5. Choose whether or not to produce the observation_by_vintage_date.sql file. In the example
below, the program will create this file.

The following two images show these settings in the update_data_vintages.php program. (Note that
these images only represent part of the code for update_date_vintages.php.3)

3 For complete update_data_vintages.php program and more detailed information regarding the environment set-up
necessary, contact webmaster@research.stlouisfed.org.

 17

C. Results of the update_data_vintages.php Program –

When the update_data_vintages.php program completes, an email is sent that contains a link to the
zipped output files- readme.txt, fred_observation.sql, fred_obs_meta.sql, and
fred_observation_by_vintage_date.sql (optional). Below is an example email:

The README.txt file is shown below. Public Vintages “true” indicates that the program was run using
release dates for the series listed.

 18

The file fred_update.log is shown below. “A” indicates the archive from which the vintage was created,
“F” indicates the time stamp on the file, and “V” indicates the vintage date used to store this revision.

The file fred_observation.sql is a database dump of the fred_observation table for only the series and
vintage dates processed by the update_data_vintages.php program. Below is an example:

The file fred_obs_meta.sql is a database dump of the fred_obs_meta.sql table for only the series and
vintage dates processed by the update_data_vintages.php program. The fred_obs_meta table stores
summary statistics about observations such as the first observation period, last observation period,
maximum number of digits, and maximum number of decimal places. This information is used to create
and format public data files created on the production server. Below is an example of the file
fred_obs_meta.sql file:

‘xxxxxxxx’;

‘xxxxxxxx’;

 19

The file fred_observation_by_vintage_date.sql is an optional file used for analysis only. This table does
not exist on production. The fred_observation_by_vintage_date.sql contains all distinct vintages of data
for the series and vintage dates processed by the program update_data_vintages.php. The file
fred_observation_by_vintage_date.sql is an exploded or verbose representation of the vintage data
contained in fred_observation.sql. The file fred_observation_by_vintage_date.sql contains the rows in
fred_observation.sql repeated for each distinct vintage date that is between the row’s valid start date and
valid end date. Below is example output:

‘xxxxxxxx’;

 20

STEP 9: WORK WITH WEB DATABASE OUTPUT
Three files of the files shown above will be used to verify the data before it is made live to the
public: fred_update.log, fred_observation.sql, and fred_observation_by_vintage_date.sql.

A. Check fred_update.log for errors and fix them. These corrections can be made to the text files or

to the spreadsheet. If the changes are made to the spreadsheet, you will need to rerun the SAS
program from Step 6 in order to create the text files required for the web group programs. Do
not move on until the error log comes back clean.

Errors and Explanations:

 Skipping $file. Error parsing file.
This usually indicates that the date is in an unexpected format or the header
of the text file doesn’t begin with the word “DATE”.

 Skipping $file. Error. All observations have missing values.
 Skipping $file. Error. The vintage date is not newer than the previous vintage.

This indicates that a file contains revisions but there is not a release date
available to assign these changes to. This usually occurs if a release date is
missing in the list.4

 Skipping $file. Error. The last observation in the previous vintage is newer than
the last observation in the file with archive date archive_date and vintage date
valid_start_date.

This indicates that the previous file contained more observations than the
current file. Check to make sure that the file shown in the error ends with
the observation that is shown in the press release.

 Error storing $file in database. ERROR: new row for relation "fred_observation"
violates check constraint "fred_obs_ped_lteq_vsd"

This indicates that the last observation in the file has a date greater than the
release date that it is being assigned to. For example, you shouldn’t have a
September 2006 CPI observation on the 2006-09-15 release date.

 Skipping $file. Error. Unequal # of obs between the previous and file vintages
from period_start_date1 to period_start_date2. ($n_db_obs_middle vs.
$n_file_obs_middle)

Check to make sure that there are no new missing rows in the middle of
your text files. Also check to make sure that no single date has more than 1
value.

B. Prepare the *.sql files for use in the SAS code below.

1. Replace all of the “\N” with a “.” for missing values and
2. Remove the final line (“\.”) of the file.

C. The following SAS program (CheckDatabaseFiles.sas) will prepare several files and pieces of

output that you can use to verify your work. In each section of code, you will need to adjust the
directory names for the location of the files that you received from the web group and for the
location of the output files that this code will produce.5

4 This error will also occur if there were changes released by the source between releases which were recorded in an
electronic database (Haver), and this data was used to create some of the vintage text files. See appendix for more
information.
5 The SAS programs in this document have been tested using version 9.1.3 Service Pack 2 (for the XP_PRO platform).

 21

1. This section verifies that the number of decimal places being stored is consistent.
A value of -1 denotes a missing value, 0 = no decimal places, 1 = 1 decimal place, etc.

 Program:

options nocenter pagesize=32767 linesize=256 nonumber nodate;

PROC IMPORT OUT= fromweb
 DATAFILE= "h:\alfred\process doc\2006-09-19_102905\fred_observation.sql"
 DBMS=TAB REPLACE;
 GETNAMES=NO;
 DATAROW=18;
 GUESSINGROWS=10000;
RUN;

data res;
 set fromweb;
 rename var1=varname

var2=period_start_date
 var3=period_end_date

var4=value
var5=junk
var6=valid_start_date
var7=valid_end_date;

run;

data res; set res;
 deconly=value-int(value);
 if deconly ne 0 then numdec=length(compress(abs(deconly)))-2;
 else if deconly = 0 then numdec=0;

 psd = put(period_start_date,yymmdd10.);
 vsd = put(valid_start_date,yymmdd10.);
run;

proc sort data=res; by varname; run;
proc freq data=res noprint;
 tables numdec*varname/list sparse out=res_numdec;
run;

proc sort data=res_numdec; by numdec; run;
proc transpose data=res_numdec out=res_numdect;
 var count;
 id varname;
 idlabel varname;
 by numdec;
run;

proc print data=res_numdect noobs;
 title "DecimalPlaces - By Series";
run;

 Output (from .LST file):
DecimalPlaces - By Series

numdec _NAME_ _LABEL_ FINSLC1

 -1 COUNT Frequency Count 98
 0 COUNT Frequency Count 140
 1 COUNT Frequency Count 1049

2. This section will count the number of revisions that took place for each series on each
release date. Then compare these results to the output in sheet “5Comparing to Web-Loaded
Files” of your original data spreadsheet to ensure that the data was transferred correctly.

 Program:

***************************;
FINDING REVISION COUNTS;
***************************;
proc sort data=res; by varname; run;
proc freq data=res noprint;

 22

 tables valid_start_date*varname/list sparse out=res_varfreq;
run;

proc sort data=res_varfreq; by valid_start_Date; run;
proc transpose data=res_varfreq out=res_varfreqt;
 var count;
 id varname;
 idlabel varname;
 by valid_Start_date;
run;

data res_varfreqt; set res_varfreqt(drop=_name_ _label_); run;
proc print data=res_varfreqt noobs;
 format valid_start_date yymmdd10.;
 title "RevisionCount - By Series";
run;

 Output (from .LST file):
RevisionCount - By Series

 valid_
start_date FINSLC1

1980-01-18 132
1980-02-22 1
1980-03-19 1
1980-04-18 1
1980-05-20 1
1980-06-18 1
1980-07-18 1
1980-08-19 1
1980-09-19 1
1980-10-17 1
1980-11-19 1
1980-12-23 135
1981-01-21 1
1981-02-19 1
1981-03-18 1
1981-04-20 1
1981-05-19 1

 Example of Comparison Spreadsheet:

 23

3. This section will place the data into a spreadsheet. You can use this spreadsheet to look at
the revision history for a specific variable, specific observation date, or specific release date. To
simplify this, use the Autofilter feature (see below) in Excel.

 Program:

**************************************;
CREATE ONE COLUMN DATA SPREADSHEET;
**************************************;
proc export data=res(drop=period_start_date valid_start_date deconly numdec junk)
 dbms=excel2000
 outfile='H:\Alfred\Process Doc\Output\fred_observation.xls';
run;

 Output (in output/fred_observation.xls):

The file that is output by SAS has been adjusted below for readability and usability.
1. The columns were rearranged to include only varname, psd, period_end_date, value,

vsd, and valid_end_date (in that order).
2. Next, select cell A2. Then select “Window-Freeze Panes” from the Excel pull-down

menus.
3. Finally, select cell A2. Then select “Data-Filter-AutoFilter” from the Excel pull-

down menus.

4. This section will plot the levels of each variable. The results should match the plots
produced in your data spreadsheet in Step 3. Also plot the current data available from the
source. The patterns should be similar to the charts produced in SAS.

Before running this section, adjust the start and end dates in the GPLOT. These dates should
include the earliest and most recent observation available over all of the vintages.

 Program:

***********************;
PLOTTING ALL LEVELS;
***********************;
proc sort data=res; by varname; run;

ods pdf file="H:\Alfred\Process Doc\Output\LevelCharts.pdf";
symbol1 l=1 w=1 c=blue i=none v=star;
proc gplot gout=plot data=res;
 axis1 order=("01jan1945"d to "31dec2010"d by year5)
 label=none

 24

 minor=none
 color=dagr;
 axis2 label=none
 minor=none
 color=dagr;
 plot value*period_start_date=1/
 overlay
 haxis=axis1
 vaxis=axis2
 autovref
 cvref=ligr
 noframe;
 by varname;
 format period_start_date year4.;
 title "Values - By Series";
run; quit;
ods pdf close;

 Output (in output/LevelCharts.pdf):

5. This section will create a spreadsheet that contains the last observation that was revised for
each variable for each release date. At this step, verify that the revision that is shown in the
spreadsheet matches the actual printed press release / source data. This step is most
important for any data pulled from an electronic archive as the archive date for these will most
likely not occur on the same day as the release date.

 Program:

**;
MANUAL CHECK OF LAST REVISION AGAINST ASSIGNED PRESS RELEASE;
**;
proc sort data=res; by varname valid_start_date descending period_start_date;
run;

data revlist(drop=lvarname lvalid_start_date period_start_date);
 set res;

 25

 label valid_start_date="Release Date";

 lvarname=lag(varname);
 lvalid_start_date=lag(valid_start_date);

 tag=1;
 if valid_start_date=lvalid_start_date and varname=lvarname then do;

value=.; tag=0;
 end;

 tocheck=put(period_start_date, date7.)||" - "||compress(value);
run;

data revlist; set revlist(where=(tag ne 0)); run;

proc sort data=revlist; by valid_start_date; run;

proc transpose data=revlist out=revlistt;
 var tocheck;
 id varname;
 idlabel varname;
 by valid_Start_date;
run;

proc export data=revlistt(drop=_name_)
 dbms=excel2000
 outfile='H:\Alfred\Process Doc\Output\ManualCheck.xls';
 sheet="Last Revision - by R.D.";
run;

 Output (in output/ManualCheck.xls):

6. This section will sum all of the observations that took place for each series on each release
date. Then compare these results to the output from Step 5D above to ensure that the data was
transferred correctly.

 Program:

***************************;
SUM OF ALL OBSERVATIONS;
***************************;
PROC IMPORT OUT= fromweb2
 DATAFILE=

"H:\Alfred\Process Doc\2006-09-19_102905\fred_observation_by_vintage_date.sql"
 DBMS=TAB REPLACE;
 GETNAMES=NO;
 DATAROW=18;
 GUESSINGROWS=20;
RUN;

data category2;
 set fromweb2;
 rename var1=varname
 var2=period_start_date

 26

var3=period_end_date
 var4=value
 var5=junk
 var6=valid_start_date
 var7=valid_end_date
 var8=vintage_date;
run;

proc means data=category2 sum noprint;
 var value;
 class varname vintage_date;
 output out=varsums sum=;
run;

proc sort data=varsums; by vintage_date; run;
proc transpose data=varsums(where=(_type_=3)) out=varsumst;
 var value;
 by vintage_date;
 id varname;
 idlabel varname;
run;

proc print data=varsumst noobs;
 title "Sum of All Obs - By Series";
run;

 Output (from .LST file):
Sum of All Obs - By Series

 vintage_
 date _NAME_ FINSLC1

1980-01-18 value 116287.3
1980-02-22 value 116290.3
1980-03-19 value 116291.1
1980-04-18 value 117735.4
1980-05-20 value 117735.6
1980-06-18 value 117735.5
1980-07-18 value 119144
1980-08-19 value 119143.1
1980-09-19 value 119141.5
1980-10-17 value 120560.4
1980-11-19 value 120559.3
1980-12-23 value 121998.6
1981-01-21 value 123488.9
1981-02-19 value 123491

 Example of Comparison Spreadsheet:

 27

7. This section creates a chart of the growth rates of the complete series as it appears on each
release date. You can also create a separate chart for each release date by changing the by
statement in the proc gplot. Again create a plot of the current growth rates and compare them
with these SAS charts.

Before running this section, adjust the growth rate calculation, the start and end dates in the
GPLOT, and the title of the chart.

 Program:
**********************;
GROWTH RATE CHARTS;
**********************;
data growth;
 set category2;

 l1vintage_date =lag1(vintage_date);
 l1value =lag1(value);
 /*Change this calculation to calculate the growth rate that you are interested in
 checking for this set of variables*/
 gro=(((value/l1value)**4)-1)*100;

 if vintage_date ne l1vintage_date then gro=.;
run;

/* To print outlying observations, adjust this proc for the variable name in
question, subsetting for the extreme where the odd observation is showing up*/
/*proc print data=growth(where=(varname in("FINSLC1") and gro>200)); run;*/

proc sort data=growth; by varname vintage_date ; run;

ods pdf file="H:\Alfred\Process Doc\Output\GrowthCharts.pdf";

symbol1 l=1 w=1 c=blue i=join v=star;
proc gplot gout=plot data=growth;
 axis1 order=("01jan1945"d to "31dec2010"d by year5)
 label=none
 minor=none
 color=dagr;
 plot gro*period_start_date=1/
 overlay
 haxis=axis1
 autovref
 cvref=ligr
 skipmiss
 noframe;
 by varname; *vintage_date; /*Uncomment for separate chart for each release date*/
 format period_start_date year4. vintage_date yymmdd10.;
 /*Adjust the title statement to match the growth calculation above*/
 title "Change from previous quarter - compound annual rate";
run;
quit;

ods pdf close;

 28

Output (in output/GrowthCharts.pdf):

STEP 10: MAKE ADJUSTMENTS/CORRECTIONS
Correct any errors that show up as a result of the checks in Step 9. These corrections can be made to the
text files or to the spreadsheet. If the changes are made to the spreadsheet, you will need to rerun the
SAS program from Step 6 in order to create the text files required for the web group programs.

Zip together the files that have been adjusted and email the file to the web group.

STEP 11: REPEAT STEPS 8-10 UNTIL NO CORRECTIONS ARE REQUIRED

 29

STEP 12: WEB GROUP MAKES LIVE ON PUBLIC WEBSITE
Once work is done on the development server, the files fred_observation.sql and fred_obs_meta.sql need
to be loaded onto the production server. On the production server, this requires deleting the existing
series observations and observation meta information on the production and loading the contents of
fred_observation.sql and fred_obs_meta.sql.

Below is a sample of upgrade.sql script.6

Before upgrade.sql is run:

1. Perform a final check to make sure everything is in place. On the production server, check that
release dates have been loaded, check that units changes have been entered, and that the files
from the development server contain the latest revisions currently available on the production
server.

2. On the production server, create a new directory and copy upgrade.sql, fred_observation.sql, and
fred_obs_meta.sql to this new directory.

3. Edit upgrade.sql to change series ids and the paths to files.
4. Edit fred_observation.sql and fred_obs_meta.sql and replace “temp” with “public”. This will

load the files into the public schema in the database instead of the temp schema which was used
on the development server.

5. At a command prompt, type ‘psql web_site’ to get a database command prompt.
6. Now type ‘\i ???/upgrade.sql’ (??? is the path to the file). This will start a transaction to delete

the existing data, load the new data, and set the vintages_public boolean in the fred_series table
to make vintage data available in ALFRED.

At this point, the transaction has not been committed and is not visible to the public. You can perform
queries to check that everything is correct. If you find errors, type ‘rollback;’. Otherwise, type
‘commit;’.

6 For complete upgrade.sql program and more detailed information regarding the environment set-up necessary, contact
webmaster@research.stlouisfed.org.

 30

APPENDIX – CREATE TEXT FILES FOR WEB GROUP FROM HAVER ARCHIVES
If you have are lucky enough to have copies of vintage Haver databases, the program below will pull the
data from those databases and write text files that can be used by the web group’s programs.

Some values in the program may need to be changed to coincide with your data (values to change are
also highlighted in green in the complete program code below).

2. %let dbname=usna;

Change usna to match the Haver database that you are pulling the data from.
3. %let inv=fsh;

Change fsh to match the Haver mnemonic for the series that you are pulling.
4. %let outv=finslc1;

Change finslc1 to match the vintage mnemonic that you are creating.
5. %let freq=quarter;

Change quarter to match the frequency of the data that you are pulling.
6. %let form=yyqp6;

Change yyqp6. to match the frequency of the data that you are working with. This is the
date format for quarterly data.

For monthly data, change yyqp6. to yymmp7.
For weekly and daily data, change yyqp6. to yymmddn8.
For calendar year data, change yyqp6. to year4.

7. file="H:\Alfred\Proces~1\webdir\&y\&y.-&m.-&d\data\gdp\&var";
command="md H:\Alfred\Proces~1\webdir\&y\&y.-&m.-&d\data\gdp\";
Change H:\Alfred\Process Doc\webdir to equal the name of the directory where you want
to store the raw text files on your PC.

8. Change the macro call (%haverpull2(…))at the bottom of the program to access the
Haver archives that you are interested in.

Program:

options nocenter nodate nonumber pagesize=32767 linesize=256 noxwait;
proc datasets; delete _all_; run; quit;

*******************************;
Haver Database to Pull From;
*******************************;
 %let dbname=usna;

******************;
Haver Mnemonic;
******************;
 %let inv=fsh;

*****************;
FRED Mnemonic;
*****************;
 %let outv=finslc1;

*********************;
Frequency of data;
*********************;
 %let freq=quarter;

**************************;
Date Format for Output;
**************************;
 %let form=yyqp6;

**************************************;
**Macro to Pull From Haver Archives **;
** and Output to Text Files **;
**************************************;
%macro haverpull2(dir1=,start=);

 31

%let y = %substr(&dir1,1,4);
%let m = %substr(&dir1,5,2);
%let d = %substr(&dir1,7,2);

 libname _all_ clear;

 Pull data from Haver database;
 libname indata sasehavr "j:\&dir1\haver\dlx\data" freq=&freq start=&start;
 data haver1;
 set indata.&dbname;
 keep date &inv;
 if &inv=. then delete;
 rename &inv=&outv;
 run;

 Create directory to store text files by archive date;
 data _null_;
 command="md H:\Alfred\Proces~1\webdir\&y.\&y.-&m.-&d.\data\gdp\";
 call system(command);
 run;

 Write text files;
 proc printto new file="H:\Alfred\Proces~1\webdir\&y.\&y.-&m.-&d.\data\gdp\&outv";
 run;
 proc print data=haver1 noobs;
 var date &outv;
 format date &form..;
 title " ";
 run;
 proc printto;
 run;

 Combine all data in a SAS dataset;
data comps;
 set haver1;
 archive="&dir1";
run;
proc append base=completeset data=comps; run; quit;

%mend;

**;
Call Macros to Pull Data from Archives;
**;
*%haverpull2(dir1=20000428,start=19470101);
*%haverpull2(dir1=20000505,start=19470101);
more archives;

*************************************;
Count revisions in Haver archives;
*************************************;
proc sort data=completeset; by date archive; run;

data counthelp(drop=l&outv ldate);
 set completeset;

 l&outv=lag(&outv);
 ldate=lag(date);

 if date=ldate and &outv=l&outv then delete;

 if archive="19990820" then delete;
run;

proc freq data=counthelp noprint;
 tables archive/list sparse out=haverrevcount;
run;

proc print data=haverrevcount noobs label;
 var archive count;
 label archive="Archive Date"
 count="Revision Count &outv";
run;

 32

Output (from .LST file):
 Revision
Archive Count
 Date finslc1

19990827 1
19991001 1
19991029 1
19991105 163
19991126 1
19991224 1
20000128 1
20000225 1
20000331 6
20000407 158
20000428 49
20000526 1

Remember, the dates listed in the output above are archive dates (not yet release dates). Compare the
above list to the list of release dates that you were expecting between 1999-08-20 to the present.

For any dates above that will not map to a release date from your list (examples of problematic dates are
highlighted in orange above), investigate to find an explanation. For data pulled from Haver, open the
archive database in Haver’s view mode, look at the data and the Haver update date and try to clean up
these odd revisions. In some cases, you may need to add an “unofficial” release date to your list. This
date usually will be set to the Haver update date and should only be included after you find
documentation from the source that interrelease changes were made.

The revision counts calculated here may differ slightly from the final Alfred web output files as these
don’t count the change to (or from) a missing value. You can still use these counts as a pattern guide for
what to expect when these data are loaded into the web database.

Remember that the rows in the spreadsheet that contain revision counts from the Haver archives are
dated using the archive date while the results off the program in Step 9.C.2 will have converted these to
release dates.

